corems.mass_spectrum.input.numpyArray
1__author__ = "Yuri E. Corilo" 2__date__ = "Oct 23, 2019" 3 4from corems.encapsulation.constant import Labels 5from corems.encapsulation.factory.parameters import default_parameters 6from corems.mass_spectrum.factory.MassSpectrumClasses import ( 7 MassSpecCentroid, 8 MassSpecProfile, 9) 10 11 12def ms_from_array_profile( 13 mz, 14 abundance, 15 dataname: str, 16 polarity: int = -1, 17 auto_process: bool = True, 18 data_type: str = Labels.simulated_profile, 19): 20 """Create a MassSpecProfile object from an array of m/z values and abundance values. 21 22 Parameters 23 ---------- 24 mz : numpy.ndarray 25 Array of m/z values. 26 abundance : numpy.ndarray 27 Array of abundance values. 28 dataname : str 29 Name of the data. 30 polarity : int, optional 31 Polarity of the data. The default is -1. 32 auto_process : bool, optional 33 Flag to automatically process the data. The default is True. 34 data_type : str, optional 35 Type of the data. The default is Labels.simulated_profile. 36 37 Returns 38 ------- 39 MassSpecProfile 40 The created MassSpecProfile object. 41 """ 42 data_dict = {Labels.mz: mz, Labels.abundance: abundance} 43 44 output_parameters = get_output_parameters(polarity, dataname) 45 46 output_parameters[Labels.label] = data_type 47 48 ms = MassSpecProfile(data_dict, output_parameters, auto_process=auto_process) 49 50 return ms 51 52 53def ms_from_array_centroid( 54 mz, 55 abundance, 56 rp: list[float], 57 s2n: list[float], 58 dataname: str, 59 polarity: int = -1, 60 auto_process: bool = True, 61): 62 """Create a MassSpecCentroid object from an array of m/z values, abundance values, resolution power, and signal-to-noise ratio. 63 64 Parameters 65 ---------- 66 mz : numpy.ndarray 67 Array of m/z values. 68 abundance : numpy.ndarray 69 Array of abundance values. 70 rp : list(float) 71 List of resolving power values. 72 s2n : list(float) 73 List of signal-to-noise ratio values. 74 dataname : str 75 Name of the data. 76 polarity : int, optional 77 Polarity of the data. The default is -1. 78 auto_process : bool, optional 79 80 Returns 81 ------- 82 MassSpecCentroid 83 The created MassSpecCentroid object. 84 """ 85 data_dict = { 86 Labels.mz: mz, 87 Labels.abundance: abundance, 88 Labels.s2n: s2n, 89 Labels.rp: rp, 90 } 91 92 output_parameters = get_output_parameters(polarity, dataname) 93 output_parameters[Labels.label] = Labels.corems_centroid 94 95 return MassSpecCentroid(data_dict, output_parameters, auto_process) 96 97 98def get_output_parameters(polarity: int, file_location: str): 99 """Generate the output parameters for creating a MassSpecProfile or MassSpecCentroid object. 100 101 Parameters 102 ---------- 103 polarity : int 104 Polarity of the data. 105 file_location : str 106 File location. 107 108 Returns 109 ------- 110 dict 111 Output parameters. 112 """ 113 d_params = default_parameters(file_location) 114 115 d_params["analyzer"] = "Generic Simulated" 116 117 d_params["instrument_label"] = "Generic Simulated" 118 119 d_params["polarity"] = polarity 120 121 d_params["filename_path"] = file_location 122 123 d_params["mobility_scan"] = 0 124 125 d_params["mobility_rt"] = 0 126 127 d_params["scan_number"] = 0 128 129 d_params["rt"] = 0 130 131 d_params[Labels.label] = Labels.simulated_profile 132 133 return d_params
def
ms_from_array_profile( mz, abundance, dataname: str, polarity: int = -1, auto_process: bool = True, data_type: str = 'Simulated Profile'):
13def ms_from_array_profile( 14 mz, 15 abundance, 16 dataname: str, 17 polarity: int = -1, 18 auto_process: bool = True, 19 data_type: str = Labels.simulated_profile, 20): 21 """Create a MassSpecProfile object from an array of m/z values and abundance values. 22 23 Parameters 24 ---------- 25 mz : numpy.ndarray 26 Array of m/z values. 27 abundance : numpy.ndarray 28 Array of abundance values. 29 dataname : str 30 Name of the data. 31 polarity : int, optional 32 Polarity of the data. The default is -1. 33 auto_process : bool, optional 34 Flag to automatically process the data. The default is True. 35 data_type : str, optional 36 Type of the data. The default is Labels.simulated_profile. 37 38 Returns 39 ------- 40 MassSpecProfile 41 The created MassSpecProfile object. 42 """ 43 data_dict = {Labels.mz: mz, Labels.abundance: abundance} 44 45 output_parameters = get_output_parameters(polarity, dataname) 46 47 output_parameters[Labels.label] = data_type 48 49 ms = MassSpecProfile(data_dict, output_parameters, auto_process=auto_process) 50 51 return ms
Create a MassSpecProfile object from an array of m/z values and abundance values.
Parameters
- mz (numpy.ndarray): Array of m/z values.
- abundance (numpy.ndarray): Array of abundance values.
- dataname (str): Name of the data.
- polarity (int, optional): Polarity of the data. The default is -1.
- auto_process (bool, optional): Flag to automatically process the data. The default is True.
- data_type (str, optional): Type of the data. The default is Labels.simulated_profile.
Returns
- MassSpecProfile: The created MassSpecProfile object.
def
ms_from_array_centroid( mz, abundance, rp: list[float], s2n: list[float], dataname: str, polarity: int = -1, auto_process: bool = True):
54def ms_from_array_centroid( 55 mz, 56 abundance, 57 rp: list[float], 58 s2n: list[float], 59 dataname: str, 60 polarity: int = -1, 61 auto_process: bool = True, 62): 63 """Create a MassSpecCentroid object from an array of m/z values, abundance values, resolution power, and signal-to-noise ratio. 64 65 Parameters 66 ---------- 67 mz : numpy.ndarray 68 Array of m/z values. 69 abundance : numpy.ndarray 70 Array of abundance values. 71 rp : list(float) 72 List of resolving power values. 73 s2n : list(float) 74 List of signal-to-noise ratio values. 75 dataname : str 76 Name of the data. 77 polarity : int, optional 78 Polarity of the data. The default is -1. 79 auto_process : bool, optional 80 81 Returns 82 ------- 83 MassSpecCentroid 84 The created MassSpecCentroid object. 85 """ 86 data_dict = { 87 Labels.mz: mz, 88 Labels.abundance: abundance, 89 Labels.s2n: s2n, 90 Labels.rp: rp, 91 } 92 93 output_parameters = get_output_parameters(polarity, dataname) 94 output_parameters[Labels.label] = Labels.corems_centroid 95 96 return MassSpecCentroid(data_dict, output_parameters, auto_process)
Create a MassSpecCentroid object from an array of m/z values, abundance values, resolution power, and signal-to-noise ratio.
Parameters
- mz (numpy.ndarray): Array of m/z values.
- abundance (numpy.ndarray): Array of abundance values.
- rp (list(float)): List of resolving power values.
- s2n (list(float)): List of signal-to-noise ratio values.
- dataname (str): Name of the data.
- polarity (int, optional): Polarity of the data. The default is -1.
- auto_process (bool, optional):
Returns
- MassSpecCentroid: The created MassSpecCentroid object.
def
get_output_parameters(polarity: int, file_location: str):
99def get_output_parameters(polarity: int, file_location: str): 100 """Generate the output parameters for creating a MassSpecProfile or MassSpecCentroid object. 101 102 Parameters 103 ---------- 104 polarity : int 105 Polarity of the data. 106 file_location : str 107 File location. 108 109 Returns 110 ------- 111 dict 112 Output parameters. 113 """ 114 d_params = default_parameters(file_location) 115 116 d_params["analyzer"] = "Generic Simulated" 117 118 d_params["instrument_label"] = "Generic Simulated" 119 120 d_params["polarity"] = polarity 121 122 d_params["filename_path"] = file_location 123 124 d_params["mobility_scan"] = 0 125 126 d_params["mobility_rt"] = 0 127 128 d_params["scan_number"] = 0 129 130 d_params["rt"] = 0 131 132 d_params[Labels.label] = Labels.simulated_profile 133 134 return d_params
Generate the output parameters for creating a MassSpecProfile or MassSpecCentroid object.
Parameters
- polarity (int): Polarity of the data.
- file_location (str): File location.
Returns
- dict: Output parameters.